
Object Reconstruction with Depth Error Compensation Using Azure Kinect

Kaiyue Shen
ETH Zurich

kashen@ethz.ch

Yunke Ao
ETH Zurich

yunkao@ethz.ch

Yifei Dong
ETH Zurich

yifdong@ethz.ch

Panayiotis Panayiotou
ETH Zurich

ppanayio@ethz.ch

Abstract

Classical 3D reconstruction methods have the built-in
problem of not being able to separate the object of inter-
est from the rest of the scene. Most methods also suffer from
shape distortion caused by inaccurate depth measurement
or estimation. In this paper, we present a method for creat-
ing precise object meshes automatically based on existing
SLAM frameworks (ORB-SLAM2 & BADSLAM) alongside
a learning-based depth error compensation mechanism for
Time-of-Flight cameras. We demonstrate the effectiveness
of our method by using the Azure Kinect RGBD camera to
reconstruct various objects. We also conduct experiments
showing better performance of our depth error compensa-
tion mechanism compared with the classical depth correc-
tion method adopted by BADSLAM.

1. Introduction
Object reconstruction is the process of capturing the

3D structure and appearance of real objects into a mesh.
Meshes encode the 3D structure of objects and can be used
for various applications e.g. 3D printing, AR etc. Current
object reconstruction methods have the limitation that there
is no obvious way to separate an object of interest from
the background. We explore this task by scanning a scene
with and without the object of interest and then attempt-
ing to reconstruct only the object of interest. The described
pipeline is composed of five processes: point cloud gen-
eration (Panayiotis), background removal (Yifei & Yunke),
geometric registration (Yifei & Yunke), surface reconstruc-
tion (Kaiyue) and system bias correction (Yifei & Yunke &
Kaiyue). We denote in parentheses the responsible group
members for each part of the project.

Point cloud generation generates a set of data points with
depth and RGB values from a set of images of a static scene.
Note that given an RGBD image, one can trivially construct
this point cloud. The challenge lies in having multiple im-
ages of the same static scene and adding points from all
images to the same point cloud keeping a common refer-
ence frame. This can be tackled by using a Simultaneous

Figure 1: 3D object reconstruction steps for a green box,
including point cloud generation (top left), background re-
moval (top right & bottom right), registration and surface
reconstruction (bottom left).

Localization and Mapping (SLAM) technique to simultane-
ously determine the camera pose and build a 3D model of
the scene.

In our project, we generate point clouds from multiple
scans, one without the object of interest and one or more
including the object. The additional scans can be useful in
capturing parts of the object which are not initially visible
(e.g. the bottom). We combine information from differ-
ent scans in subsequent steps. Geometric registration is the
process of transforming different point clouds into one co-
ordinate system. Background removal is the process of sub-
tracting the background point cloud from the whole scene
point cloud and only keeping the point cloud of the object of
interest. At first, for each scan including the object, we reg-
ister it with the point cloud that doesn’t include the object.
We post-process the registration outliers to extract a point
cloud of the object of interest. The next step is to combine
the object point clouds extracted from scans with geometric
registration into a single object point cloud. Mesh recon-

1

Figure 2: Framework of object reconstruction with depth error compensation using Azure Kinect.

struction finally builds a 3D mesh from the obtained point
cloud through classical Poisson reconstruction methods.

System bias correction is the process of compensating
the depth error of the depth camera by applying machine
learning on a calibration dataset (e.g. Aprilgrid pattern),
aiming to obtain a better mesh. The depth error we focus
on includes wiggling error and reflectivity dependent errors
that are not caused by inaccurate calibration [5].

In conclusion, the five-step pipeline transforms a few
videos (at least one video of the object and one scene with-
out it) from an RGBD camera into a corrected 3D object
mesh ready for further applications. Our main contributions
include:

• We build an automatic object surface reconstruction
framework based on existing SLAM frameworks.

• We apply machine learning to compensate depth error
of Azure Kinect camera, which outperforms the undis-
tortion method used by BADSLAM in terms of RMSE.

2. Related Work

For point cloud generation, we register depth and color
cameras using standard calibration methods for the pinhole
camera model as described in Hartley and Zisserman [8].
For combining the points into a single coordinate frame we
use SLAM. SLAM is a very well researched algorithm [19]
[15] and in this work we merely use some of the SOTA
methods (BADSLAM [19], ORB-SLAM2 [15]) compar-
ing their performances on our task. We note the distinc-
tion of dense (BADSLAM) and feature-based (ORB-SLAM2)
SLAM methods. In feature-based methods the optimiza-
tion is done using only a sparse set of keypoints (features)
while in dense methods all the points contribute to the error

to be minimized which causes a higher runtime and com-
putational cost. More specifically, in ORB-SLAM2 BA is
performed on a sparse set of keypoints, minimizing repro-
jection error of the reconstructed points while in BADSLAM
direct BA is performed minimizing a photometric and geo-
metric error.

For background removal, the existing approach applied
by KinectFusion is first using geometric registration algo-
rithms to detect points with significant disparity to the back-
ground map [11]. Then connected patches are clustered us-
ing DBSCAN [4] to extract the target object point cloud.
We also adopt this idea in our framework.

For geometric registration, the classical iterative closest
point algorithm (ICP) is widely applied [2] [13]. ICP al-
gorithm requires a set of initial rotations and transforma-
tions since it only converges to the nearest local minimum
of a distance metric. Good initialization of the transforma-
tion matrix could be achieved using RANSAC-based global
registration [3]. Fast global registration proposed in [21]
could further speed up the optimization process. In the
case of registration of colored point cloud sets generated by
RGBD camera, a colored point cloud registration method is
proposed synthesizing geometric and photometric informa-
tion [16]. All these methods are applied to obtain precise
registration in our framework.

Poisson surface reconstruction [10] is a typical mesh re-
construction method. It reconstructs a triangle mesh from a
set of oriented 3D points by solving a Poisson system. In
order to preserve the color information, one way is to keep
the color of point cloud and extrapolate the color values to
the vertices of the reconstructed mesh, and another [12] [6]
is to reconstruct the mesh first and then project the texture
onto faces using the captured RGB-D sequences. Taking
the time consumption into account, we choose the first one

2

in our implementation.
BADSLAM includes the non-calibration depth error cor-

rection in its intrinsic optimization process [19], where the
depth values are corrected according to the model proposed
by [9]. However, non-calibration depth error of Tof camera
is influenced not only by the direction of light emitted from
the camera, but also by the distance and reflection properties
of the measured surface [5]. Fuchs and Hirzinger model the
distance-related offset as a third-order polynomial [7]. Fer-
stl et al. proposed a Random Forest (RF) to predict the depth
error using depth value and pixel position together with in-
tensity features [5]. This approach is most suitable for our
purpose to include more features for depth error compen-
sation of BADSLAM. In our pipeline, we use both RF and
Neural Network (NN) to train models to correct the depth
offset error given intensity features and geometry features.

3. Point cloud generation and SLAM
The input to point cloud generation is an RGBD video of

a static scene and the output is a combined 3D RGB point
cloud of all the frames. To start with, we use the Azure
Kinect as our camera. The Azure Kinect has 2 cameras, a
depth camera and a color camera, which are separate de-
vices capturing from different points of view and have dif-
ferent resolutions. As a result, one does not get an RGBD
video directly, but rather an RGB video and a separate depth
video. Neither the resolution, nor the camera pose nor cali-
bration nor the frame timing match between the two camera
feeds. We first want to perform RGB and Depth registration
to align the RGB and Depth frames and then use them as
part of a SLAM pipeline.

We implement registration which takes video frames
(RGB and Depth) and registers them using the extrinsic
and intrinsic characteristics of the two cameras. We need
the intrinsic matrices Krgb, Kdepth for both cameras and
a transformation matrix from one camera to the other P
(which can be computed from the two extrinsic matrices,
but in the Azure Kinect is provided with an API call).

P =

[
R t
0 1

]
(1)

Kdepth =

 fxd sd cxd
0 fyd cyd
0 0 1

 (2)

Krgb =

 fxrgb srgb cxrgb
0 fyrgb cyrgb
0 0 1

 (3)

In Algorithm 1 (largely inspired from [14]) we describe
how to map depth pixels to color pixels, getting 3D points
with RGB values.

After getting registered RGB and Depth video tracks we
want to use an RGBD version of SLAM on top of them to

Algorithm 1: RGB and Depth Registration
Data: Krgb,Kdepth,P
1. Map each pixel (xd, yd) to 3D world space W .
W.x = (xd − cxd)× depth(xd, yd)/fxd
W.y = (yd − cyd)× depth(xd, yd)/fyd
W.z = depth(xd, yd)

2. Transform to the coordinate frame of the RGB
camera C = R×W + t

3. Project each of the 3D points to the color frame
Cframe.x = (C.x · fxrgb/C.z) + cxrgb
Cframe.y = (C.y · fyrgb/C.z) + cyrgb

4. From the x,y values in the color frame we can
reject points that are outside the frame and keep
the RGB value for each point that is within the
frame. This way we just created an {x, y, z, r, g, b}
tuple i.e. an aligned frame.
C.rgb = rgb(Cframe.x, Cframe.y)

Result: Aligned frames C(x, y, z, r, g, b)

build a map of the scene. SLAM is an algorithm for simul-
taneously constructing a 3D model of a scene and keeping
track of the pose & location of a camera in it. After perform-
ing SLAM we have a camera pose and trajectory which we
can use to align the point clouds of each frame (transform
all of them to the same coordinate frame). There are various
algorithms for achieving this but here we consider RGB-D
SLAM SOTA approaches BADSLAM and ORB-SLAM2.

We notice that both choices perform similarly and have
similar issues. More importantly they very easily lose track
if the camera is moving “too fast”. While we notice that
ORB-SLAM2 loses track less easily than BADSLAM we
choose to use BADSLAM for our practical experiments.
BADSLAM has a live-feature implemented and can perform
SLAM with live input from the Azure Kinect camera. In
practical applications, such as ours, this is a huge advan-
tage since it can notify the user that they’re moving too fast
(or any other problem) while they are still recording. We
further note that BADSLAM does have implemented point
cloud generation and RGB & Depth registration but we still
implemented these to be able to compare with ORB-SLAM2.
We provide our code for both methods along with instruc-
tions for usage.

4. Surface reconstruction
4.1. Background removal

The pipeline of background removal is illustrated in fig-
ure 2. The inputs are two point clouds of a scene. One of
them contains the target object and the other does not. The
output is a point cloud of the target object.

We first register two input point clouds and obtain the
outliers. Afterward it is cropped to get a smaller area con-

3

Figure 3: Demonstration of RGB and Depth registration
by overlaying aligned color and depth frames. While this
works effectively in some scenarios (left), some parts of
the scene could cause trouble e.g. reflections on the table
(right). The rhombus shape indicates the difference in reso-
lutions between the two cameras.

taining points of the target object. The crop operation fol-
lows an approximate guess of distance from the object to
the camera. The density-based clustering algorithm, DB-
SCAN [4], is then implemented to extract the object point
cloud. As an optional choice, a plane could be segmented
out from selected points using RANSAC before clustering
to remove the points of the surface that the object is placed
on. We select the target object from the clusters following
several criteria: (1) Minimum outlier ratio is 0.95; (2) The
interval of number of points in the cluster is [1000, 40000].

4.2. Geometric registration

In the previous steps, our algorithm generates two or
more 3D point cloud sets of a target object. The object is
placed in different poses in the world coordinate system in
different sets so that the object surface area could be cap-
tured completely. Additional scans can be useful to capture
parts of the object which were not visible in one scan by
changing its position in the scene (e.g. the bottom part of
the object). The inputs of geometric registration are two or
more point clouds with arbitrary initialization transforma-
tion. The output is a transformation matrix that perfectly
aligns the point clouds.

Our algorithm synthesizes the advantages of several reg-
istration methods to optimize the running time. It is demon-
strated in the geometric registration section of figure 2. In-
stead of taking a set of arbitrary transformations as initial-
ization, which suffers from the risk of ICP failure, we first
generate a rough alignment through RANSAC-based global
registration. At the end, outliers are removed to suppress the
noise and overlapping layers are merged.

In global registration, a Fast Point Feature Histograms
(FPFH) feature is calculated for each point after down-
sampling the point cloud. The FPFH feature is a vector
composed of 33 elements containing information of 3D co-
ordinate and estimated surface normal [18]. Random sam-
ple consensus (RANSAC) is then applied to find a rough
alignment of point clouds with a nearest-neighbor querying
method in feature space.

Iterative closest point algorithm (ICP) provides a refined

alignment for two point clouds. In each iteration, a corre-
sponding set K = {(p, q)} is built from source point cloud
P and target point cloud Q transformed with current trans-
formation matrix T. Then T is updated by minimizing the
objective of a point-to-plane distance metric [17]:

E(T) =
∑

(p,q)∈K

((p− Tq) · np)
2 (4)

where np is the normal of point p.

4.3. Mesh reconstruction

Mesh reconstruction is to reconstruct a smoothed colored
mesh from the registered point cloud data. It can mainly be
separated into two steps as shown in figure 2: (1) Mesh
reconstruction; (2) Mesh cropping.

Since our registered point clouds are not oriented, we
first estimate the normal for points using standard moving
least-squares method [1]. For each point in the cloud, it
picks the nearest neighboring points and finds a local plane
that minimizes the sum of square distances. Next, we per-
form the Poisson Surface Reconstruction [10], which recon-
structs a triangle mesh from a set of oriented 3D points by
solving a Poisson system. The idea is that the gradient of
the indicator function χ should be equal to the surface nor-
mal field ~V when near the surface and zero otherwise, i.e.
minχ ‖∇χ− ~V ‖. Since we find some reconstruction results
especially those unclosed meshes have redundant parts (see
in Appendix), we then compute the oriented bounding-box
containing the raw point cloud, and use it to filter all sur-
faces from the mesh outside the box. Finally, after perform-
ing the smoothing, we find some small meshes exist due to
noise. So we implement a connected components algorithm
to cluster the triangles and remove components with trian-
gle numbers less than 500.

5. Depth Error Compensation
The goal of depth error compensation is to reduce the

offset of depth images before feeding them to the SLAM
and reconstruction pipeline. In the original framework of
BADSLAM, each pair of raw RGB and depth images will
first be aligned and reshaped to the same size. Then a shared
camera intrinsic will be optimized for both the RGB and
depth image. These preprocessed images and intrinsic are
input to the following odometry and mapping framework.
In our modified pipeline, each pair of preprocessed images
and intrinsic will first go through our depth error correction
pipeline before the following process.

For each input pairs of depth and color images, we will
predict the depth error at each pixel of the depth image us-
ing a learned model. The extracted features at each pixel
include f(u, v) = {u, v, d, ∂d∂u ,

∂d
∂v I,

∂I
∂u ,

∂I
∂v ,

∂2I
∂2v + ∂2I

∂2u},
where u, v are pixel positions, d is the depth value at each

4

Figure 4: Framework for depth error compensation

depth image pixel, I is the intensity values at each color im-
age pixel. To train the model, we collect training and val-
idation images by scanning an Aprilgrid target board from
different directions. Given the calibration target, we first
generate the ground truth dt of each depth pixel, then dif-
ferent models are used to learn the mapping from extracted
features f(u, v) to the depth error dt − d. The framework
of depth error compensation is shown in figure 4.

5.1. Training Data Generation

Before calculating the gradient features of images, we
first apply the bilateral filter to smooth the depth image. The
first-order gradients of images are obtained by the Sobel fil-
ter, and the second-order features are extracted using Lapla-
cian filter. All the features are scaled to range from -1 to 1
except for the measured depth, which is scaled by a known
depth ratio r from raw pixel value to real depth.

For ground truth generation, our pipeline is inspired by
[5]. Firstly, we extract the apriltags from color images us-
ing AprilTag library [20]. Given centers of the apriltags as
target points, the extrinsic Twc between the camera and the
target board can be determined by solving the Perspective-
n-Point (PnP) problem. Then the measured point cloud
{P iw = [xiw, y

i
w, z

i
w]
T }ni=0 is projected to the world coor-

dinate according to the camera intrinsic K and depth di:

P iw = Twc ·K−1
di

r

uivi
1

 (5)

Only a part of the point cloud inside a convex hull {Pw|0 <
xw < a, 0 < yw < b, |zw| < thr} is selected to generate
training data, where the corner target of the target board is
set as the origin of the world coordinate, XY plane is the
target board plane (sw = [0, 0, 1, 0]), a, b are width and
height of the board respectively, and thr is a small value
that guarantees to only select the point cloud of the board.

To obtain the ground truth, we first transform the April-
grid board plane to the camera frame: sc = T−Twc sw. Then

we define the ground truth positions P ict of each measured
target board point in the camera frame as the intersection of
the viewing ray of the corresponding depth pixel with the
true target board plane sc. The ground truth point coordi-
nates P ict and depth zict satisfy:

P ict = zictK
−1

uivi
1

 = zictP
i

ct (6)

where P
i

ct denotes the normalized coordinates of ground
truth points. So the true depth value dit is calculated by:

nc · P ict + ac = 0 (7)

⇒ zict = −
ac

nc · P
i

ct

(8)

⇒ dit = r · zict = −
rac

nc · P
i

ct

(9)

where nc is the normal of the target board plane (first three
elements of sc), ac is the last element of sc.

5.2. Learning Depth Error Compensation

We use both neural network and Random Forest to train
models to learn the mapping from input features to depth
error. Fully connected deep neural networks are suitable
for modeling complex nonlinear mappings. In our problem,
we build a network with 2 fully connected hidden layers, as
with more hidden layers the model seems to overfit to the
training dataset. The dimensions of layers are 1024 and 256
respectively. To avoid overfitting, l1-l2 regularizations and
dropouts are added to each layer. Using an Adam optimizer,
the model is trained with a learning rate decay schedule.

Random Forest is a meta estimator with an ensemble of
decision trees. Each decision tree only learns a subset of the
dataset and the meta estimator uses the average of decision
trees to improve accuracy and control overfitting []. For RF
regression, we use 16 decision trees with maximum depths
of 16. The quality of splits of decision trees is evaluated by
mean squared error.

6. Experiment
6.1. Surface Reconstruction

As stated in Sec. 3, we use both ORB-SLAM2 and BAD-
SLAM and find they have similar performance. So we sim-
ply show the result using use BADSLAM in the following
experiment part. First, we perform BADSLAM twice to get
sets of point clouds with and without objects using Azure
Kinect camera. In the background removal stage, we crop
the outliers with 2×2×2 box given initial distance between
camera and object, and set density parameter ε in DBSCAN
to be 0.35 × voxelSize , where voxelSize equals 0.05.

5

kerry
Highlight

kerry
Highlight

Figure 5: Mean (left column) and standard deviation (right
column) of depth error at each pixel among 100 original
images (a)-(b) and corrected images using neural network
(c)-(d) and random forest (e)-(f).

In Geometric registration, both global registration and ICP
registration choose the voxel size as 0.004. In the mesh re-
construction, the maximum octree depth of the reconstruc-
tor is set to 8 in order to keep a balance between recon-
struction speed and quality. We directly use the color of
point cloud instead of doing texture mapping since we find
the latter method takes minutes, which is far from real-time.
Generally, each step above takes less than 10 seconds.

We show one example of surface reconstruction stage
outputs in Figure 1. We note that after the first registra-
tion, most area of the background other than the green box
is removed. A relatively noiseless point cloud is obtained
after the clustering. After implementing geometry registra-
tion and mesh reconstruction, we obtain an aligned point
cloud with most outliers removed. A smoothed colored
mesh could be generated in the end.

6.2. Depth error compensation

We collect preprocessed depth and color images of an
Aprilgrid board with Azure Kinect RGBD camera. The size
of the board is 80cm× 80cm, where the side length and in-
terval of the April tags are 8.8cm and 2.64cm respectively.
We take 1000 images of the Aprilgrid board with 15Hz. The
size of aligned depth and color images is 1280 × 720. To

0.4 0.5 0.6 0.7 0.8 0.9

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020 original error
new error

(a) Neural network

0.4 0.5 0.6 0.7 0.8 0.9

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020 original error
new error

(b) Random forest

Figure 6: Increment of error w.r.t. measured depth before
and after error compensation.

RMSE (m) Std (m) Mean (m)
Original 0.00534 0.00432 -0.00314

BADSLAM 0.00433 0.00428 0.00064
Neural Network 0.00403 0.00382 -0.00127
Random Forest 0.00405 0.00387 -0.00119

Table 1: Comparison of RMSE, standard deviation (Std)
and mean of depth error among original image, BADSLAM
correction, neural network and random forest correction.

obtain a reasonable size of training data, we only select one
from five images to generate data. For each selected image,
we augment the dataset by flipping the image vertically, hor-
izontally, and both together. We only select 5% of the points
in the convex hull to extract training data. The same gener-
ated data are fed to train both the random forest and neural
network model for comparison. Validation images are se-
lected from the remaining images in the original dataset.

The results of depth error compensation are shown in fig-
ure 5, 6 and table 1. Furthermore, we calculate the mean er-
ror and standard deviation error of 100 target board images
at each pixel, which is shown in figure 5. The results indi-
cate that our algorithm universally reduces the depth error,
given any input image. This is also numerically proved in
table 1, with the mean of depth errors decreased by 62.1%
after random forest training. The data in table 1 implies the
error reduction effects of the neural network algorithm are
comparable with that of random forest algorithm, showing
better performance than the methods adopt by BADSLAM.
Figure 6 demonstrates the error accumulates as depth in-
creases and our approaches substantially reduce the error.

7. Conclusion

We presented a method for creating precise surface
meshes automatically from objects and a depth error com-
pensation mechanism. This allows to create 3D object
meshes from a few videos of an RGBD camera. As future
work, one might consider further extending the pipeline to
a real-time interactive object surface reconstruction frame-
work with depth error compensation.

6

References
[1] J. Berkmann and T. Caelli. Computation of surface geome-

try and segmentation using covariance techniques. In IEEE
Transactions on Pattern Analysis and Machine Intelligence,
volume 16, pages 1114–1116. IEEE, 1994. 4

[2] P. Besl and N. Mckay. A method for registration of 3-d
shapes, ieee trans. P flattern Anal. and M ac h ine I ntell,
1(4):23, 1992. 2

[3] R. Cupec, E. K. Nyarko, A. Kitanov, and I. Petrovic.
Ransac-based stereo image registration with geometrically
constrained hypothesis generation. Automatika Journal for
Control Measurement Electronics Computing & Communi-
cations, 50(3-4):195–204, 2009. 2

[4] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In Kdd, volume 96, pages 226–231,
1996. 2, 4

[5] D. Ferstl, C. Reinbacher, G. Riegler, M. Rüther, and
H. Bischof. Learning depth calibration of time-of-flight cam-
eras. In BMVC, pages 102–1, 2015. 2, 3, 5

[6] Y. Fu. Texture mapping for 3d reconstruction with rgb-d
sensor. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4645–4653, 2018. 2

[7] S. Fuchs and G. Hirzinger. Extrinsic and depth calibration of
tof-cameras. In 2008 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–6. IEEE, 2008. 3

[8] R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, ISBN:
0521540518, second edition, 2004. 2

[9] D. Herrera, J. Kannala, and J. Heikkilä. Joint depth and
color camera calibration with distortion correction. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
34(10):2058–2064, 2012. 3

[10] H. Hoppe. Poisson surface reconstruction and its applica-
tions. In Proceedings of the 2008 ACM symposium on Solid
and physical modeling, volume 10, 2008. 2, 4

[11] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,
P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison,
et al. Kinectfusion: real-time 3d reconstruction and inter-
action using a moving depth camera. In Proceedings of the
24th annual ACM symposium on User interface software and
technology, pages 559–568, 2011. 2

[12] V. Lempitsky and D. Ivanov. Seamless mosaicing of image-
based texture maps. IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–6, 2007. 2

[13] K.-L. Low. Linear least-squares optimization for point-to-
plane icp surface registration. Chapel Hill, University of
North Carolina, 4(10):1–3, 2004. 2

[14] M. Maghoumi. Align depth and color frames – depth and rgb
registration. https://www.codefull.net/2016/03/align-depth-
and-color-frames-depth-and-rgb-registration/. 3

[15] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: an open-
source SLAM system for monocular, stereo and RGB-D
cameras. IEEE Transactions on Robotics, 33(5):1255–1262,
2017. 2

[16] J. Park, Q.-Y. Zhou, and V. Koltun. Colored point cloud reg-
istration revisited. In Proceedings of the IEEE International
Conference on Computer Vision, pages 143–152, 2017. 2

[17] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp
algorithm. In Proceedings third international conference on
3-D digital imaging and modeling, pages 145–152. IEEE,
2001. 4

[18] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature
histograms (fpfh) for 3d registration. In 2009 IEEE interna-
tional conference on robotics and automation, pages 3212–
3217. IEEE, 2009. 4

[19] T. Schops, T. Sattler, and M. Pollefeys. Bad slam: Bundle
adjusted direct rgb-d slam. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
134–144, 2019. 2, 3

[20] J. Wang and E. Olson. AprilTag 2: Efficient and robust fidu-
cial detection. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Octo-
ber 2016. 5

[21] Q.-Y. Zhou, J. Park, and V. Koltun. Fast global registration.
In European Conference on Computer Vision, pages 766–
782. Springer, 2016. 2

7

https://www.codefull.net/2016/03/align-depth-and-color-frames-depth-and-rgb-registration/
https://www.codefull.net/2016/03/align-depth-and-color-frames-depth-and-rgb-registration/

